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Molecular theory of smectic C liquid crystals 
by E. VELASCOT§, L. MEDEROSS and T. J. SLUCKIN*t 

T Faculty of Mathematical Studies, University of Southampton, Southampton 
SO17 lBJ, U.K. 

$ Instituto de Ciencia de Materiales Consejo Superior de Investigaciones 
Cientificas, E-28049 Cantoblanco, Madrid, Spain 

(Received 14 August 1995; accepted 13 October 1995) 

We generalize an earlier density functional theory of liquid crystals by Mederos and Sullivan. 
The original theory took account of anisotropic hard core interactions, and for suitable 
intermolecular interactions predicted nematic and smectic A phases as well as isotropic liquid 
and vapour phases. In this generalization we also take into account quadrupolar or dipole- 
induced dipole interactions. The modified theory now also predicts the existence of a 
smectic C phase. 

1. Introduction 
The molecules from which the liquid crystalline phases 

are built are sometimes complex, sometimes flexible, but 
always extremely anisotropic. A qualitative understand- 
ing of the phase progression for particular liquid crystals 
can sometimes be obtained from a consideration of 
the nature of the anisotropic interactions between the 
molecules. Nevertheless, a detailed description of the 
thermodynamics of particular liquid crystals remains a 
challenging problem. 

Much progress in liquid crystal physics has been 
obtained using simple models. These models do not 
represent molecules in a realistic way, but nevertheless 
permit simple ideas about the interplay between different 
forms of interaction potential to be explored. The 
Maier-Saupe [ 11 and Onsager [ a ]  theories of thermo- 
tropic and lyotropic nematic liquid crystals are well 
known examples. The density functional theories of 
liquid crystals which have been widely employed over 
the last decade put these ideas on a firmer footing 

In this paper we construct a density functional theory 
of thermotropic smectic C (S,) liquid crystals. In so 
doing we combine ideas from a number of areas, most 
notably, earlier theories of our own of lyotropic smectic 
C liquid crystals [ll] and of thermotropic smectic A 
(S,) liquid crystals [7]. The crucial problem is how to 
combine effects of shape and longer range dispersion 
forces self-consistently. For suitable interaction para- 

[3-lo]. 

* Author for correspondence. 
§Present address: Departamento de Fisica de la Materia 

Condensada, Universidad Autonoma de Madrid, E-28049 
Madrid, Spain. 

meters, as temperature is reduced, our theory predicts 
isotropic fluid, then a nematic or smectic A phase, and 
finally a smectic C phase. Varying the interaction para- 
meters can eliminate some or all of the liquid crystal 
phases. We also obtain a vapour phase. At this stage, 
the phase transitions between the phases are more first 
order than is observed experimentally, however, and we 
shall return to this feature of our results at the end of 
the paper. 

The paper is constructed as follows. In $2 we give a 
brief background to previous attempts at modelling 
smectic phases. In 43 we present the model and theory. 
In 6 4 we present results on the phase diagrams predicted 
by our theory. Finally in $ 5  we give a brief discussion. 

2. Theories of smectic phases 
The smectic phases are layered phases. In the smectic 

A phase the molecules are more or less oriented in a 
direction perpendicular to the layers, whereas in the 
smectic C phase the director is tilted with respect to the 
layer normal. 

It was long the folklore of the liquid crystal community 
that an essential ingredient of the physics of the smectic 
phases was a degree of flexibility in the liquid crystal 
molecules. That this was not the case was shown by 
Stroobants et al. [12] in a classic set of simulations. 
These simulations showed that a smectic A phase could 
be induced in hard spherocylinders at sufficiently high 
packing fractions. A subsequent density functional 
theory by Mulder [13] explained easily why this was 
the case, albeit in an idealized case of perfectly aligned 
molecules. The transition to a layered phase can be 
thought of as coming from an effective interaction whose 
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400 E. Velasco et al. 

origin is the (entropic) volume exclusion, and whose 
effect is more marked at high packing fractions. 

In small molecule liquid crystals, of course, the SA 
phase appears with decreasing temperature rather than 
increasing density. Nevertheless it is an appealing idea 
that the essential cause remains a balance between some 
short range repulsion, whose origin is the molecular 
shape, and longer range attraction. Somehow the attrac- 
tion can dominate at lower temperatures. Mederos and 
Sullivan [7] were able to construct an explicit scheme 
within which this was the case. 

The crucial innovation of Mederos and Sullivan was 
to use a non-local density functional of the form made 
popular by Tarazona [ 141 in his studies of the freezing 
transition. Density functional theories predict that tem- 
perature-driven phase transitions follow from a balance 
of short range steric repulsion and longer range disper- 
sive attraction. The reference system, with only short 
range repulsive interactions, was taken to be a system 
of parallel hard ellipsoids, whose interaction could then 
be extrapolated from a stretched hard sphere fluid. This 
scheme predicted a sensible phase diagram, with iso- 
tropic fluid, nematic and S, phases in the right places. 
The scheme gives no insight into more complex smectic 
phases, however. 

Speculation into the molecular origins of the S, phase 
go back at least two decades. One idea posits a direct 
connection between molecular biaxiality and the phase 
biaxiality implicit in the Sc phase [S, 151. Alternatively, 
transverse dipoles can break the uniaxial symmetry of a 
hard rod [16-181. The problem with this idea is that a 
resulting S, phase would be extremely biaxial and rota- 
tions around the molecular long axis would be essentially 
frozen, which seems not to be the case experimentally 

From a different perspective, Barber0 and Durand 
[ 201 have argued, using essentially macroscopic argu- 
ments, that electric quadrupole interactions are a basic 
physical mechanism underlying not only tilted phases, 
but also tilted textures at the surface of a nematic phase. 
Now, the electric quadrupole interaction comes from 
the V,,, term in a spherical harmonic expansion of the 
intermolecular potential. Using more microscopic 
arguments, a number of authors, including ourselves 
[21-231 have shown that indeed tilted surface textures 
arise from just this contribution to the intermolecular 
potential. 

In fact, as shown in detail by van der Meer [24], the 
effect of the induced dipole potential caused by the 
presence of off-centre transverse dipoles is rather similar 
to that of point electric quadrupoles placed at the 
molecular centres. Both of these potentials have a V,,, 
component, although the induced dipole interaction 

~ 1 9 1 .  

has a r - 6  behaviour, whereas the quadrupole term 
has r-' behaviour at long distances. A few years ago 
Poniewierski and one of the present authors [ 111 investi- 
gated the properties of a fluid of parallel hard cylinders 
with a superimposed long range V2,4/r6 potential. This 
study showed that a smectic C phase was indeed pro- 
duced, although some anomalous features of the phase 
diagram remained. The most striking of these was that, 
as temperature was decreased, in an intermediate density 
regime, the phase progression could be from a smectic 
to a nematic phase, rather than the expected converse. 

The results of this study were nevertheless encour- 
aging, given the simplicity of the model, especially in 
view of the unphysical restriction of perfect orientational 
order. The present study attempts to combine the attract- 
ive features of the model of Poniewerski and Sluckin 
[ 111-which does contain a Sc phase-and that of 
Mederos and Sullivan [ 71-which deals rather more 
realistically with the thermal onset of smectic behaviour. 

3. Model 
In this section we shall give a brief account of the 

model and the numerical techniques used to solve it. We 
use density-functional theory to calculate the equilibrium 
structure and thermodynamics of the liquid crystal 
material. We suppose rigid rod-like molecules whose 
orientation is uniquely defined by a direction A. In the 
density-functional formalism, the molecular liquid is 
then characterized by the one-particle distribution func- 
tion p( r ,A) ,  where r is the position of a point in the 
material. An approximate free-energy functional is then 
constructed and minimized with respect to the density 
distribution. For systems with realistic intermolecular 
interaction potentials, the conventional perturbation 
theory of liquids gives the free energy as 

F = Fref + Fatt, 

where F,,, and Fa,, represent the contributions from a 
reference fluid of purely repulsive molecules, and the 
perturbation due to attractive forces, respectively. Let 
us consider the two contributions separately. 

(1) 

3.1. The attractive contribution to the free energy 
The contribution of the attractive interactions is given 

in the mean-field approximation 

Fat, = II dr dr' d f i  dhrp(r, A)&(r - r', A, SZ')p(r', SZ'). 
2 

(2) 

This approximation is in the original spirit of van der 
Waals' theories of liquids. This approximation has been 
successfully used in related theories of liquid crystals 
[ 5,7,8,11,13]. More sophisticated theories of simple 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



40 1 Molecular theory of smectic C phases 

liquids, such as the Weeks-Chandler-Andersen theory 
[25], also involve the pair distribution functions in the 
hard core fluid. We adopt the simplest approximation, 
namely that gHc(r) = 1 for allowable configurations. 
Using a more sophisticated gH,-(r) would considerably 
complicate the theory, and would almost certainly have 
little qualitative effect on the form of the results. 
The principal effect would be to introduce an effective 
temperature dependence in the parameters A,  B,  C, D, 
which we shall introduce below, which characterize the 
intermolecular potential. 

The attractive intermolecular potential between a 
pair of molecules, Ktt, can be expanded in spherical 
harmonics: 

Ktt(r&&') = c b1&) c C ( 4 k m z m z m )  
"1 12 mlmzm 

x ~ l m l ( ~ ) ~ 2 m z ( A ~ ) Y ~ ( i ) .  (3 )  

Here all coordinates are referred to a laboratory-fixed 
reference frame. We truncate the expansion at 1 = 2. 
We have modelled the components qlL2i(r) by the foll- 
owing Lennard-Jones forms, suggested by the WCA 
perturbation theory [ 251: 

= & 1 1 1 2 1 W ,  (4) 

where 

- 1/4, r < 21160. 

Clearly these are arbitrary choices, although they have 
been used with success in earlier analogous studies [ 71. 
Note that we have chosen the range parameters of all 
the components to be equal. c will be identified below 
as the average diameter of the anisotropic hard core, oeq. 

Using the addition theorem for spherical harmonics, 
we obtain the following physically more transparent 
expression for the intermolecular potential: 

Ktt(r, A, A') 
= u(r) { A  + BP& - S2) + C[P& * i) + p2(& * i)] 

+ D[ 1 - 5(& - ?jZ - 5(A * f)2 + 2(A - &)2 

+ 35(f? * ?)2(& - P)2 - 20(h  * i)@ *?)(A * &)I}. 
The parameters A, B,  C, and D are related to the 

E~~~~~ in the following way: 

The first term in equation (7) is independent of angular 
orientation and sets the temperature scale of the 
liquid-vapour critical point. The B term, which only 
depends on the relative angle 8 between the symmetry 
axes of the two molecules fish2,, promotes nematic 
formation and is the usual Maier-Saupe term. The C 
term couples the molecular orientation to the intermol- 
ecular vector r and favours configurations in which the 
molecules arrange in layers. The D term, which has a 
quadrupolar symmetry, and which we have discussed in 
the last section, is expcted to drive the molecules to a 
tilted configuration. An additional contribution 1322, 
appearing in the expansion (3), will not be considered 
in the present study. 

The one-particle distribution function can be factor- 
ized, without loss of generality, as 

P(r, A) = p(r)f(r, A)? (8 )  

where f(r, 6) is the orientational distribution function. 
The latter can also be expressed in a spherical harmonic 
representation, 

where fim(r) are orientational order parameters. In the 
case of smectic phases these functions depend only on 
z ,  which is along the layer normal. At the present level 
of truncation of the expansion (3), the biaxial smectic C 
phase can be represented by the density wave p ( z )  and 
the five coefficients .fim(z) (rn = - 2 , .  . . ,2)  generated 
within the subspace I = 2. In the undistorted smectic 
phase, the director will always have the same orientation 
irrespective of the spatial location of a molecule [26]. 
We can thus arbitrarily choose the x axis as lying along 
the projection of the director onto the smectic layers. 
Mirror symmetry across the xz plane then implies the 
relation f i ,  - m  = (- l)mfim, which reduces the number of 
order parameters to three. It is convenient to redefine 
these parameters as follows [S]: 

~ ( z )  =.f;o(z) = df?Pz(cos 8).f(z, fi), (104 s 
= - ( :)'I2fZ2(z) = 1 dA sin2 8 cos 24f(z, f?), (10 b) 

(1Oc) v(z) = (i)"' fZ1(z) = 1 d h  sin 28 cos $f(z, A). 

The biaxial state of the phase is characterized by non- 
zero values of ,u and v. The final expression for the 
attractive free energy per unit volume in terms of the 
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402 E. Velasco et al. 

orientational order parameters is 

Fa,, 1 
v 2d 
- = - jod dzp(z) J’ dz’p(z’) 

x [AOooo(z - 2’) + B U I ~ ~ ~ ( Z  - 2 ’ )  

x (q(z )q(z ‘ )  + tp(z)p(z’) + $.(Z)V(z’)) 

+ CO ,̂O~(Z - z ’ ) ( ~ ( z )  + ~ ( z ’ ) )  + DUI,,,(Z - z ’ )  

x ( 6 q ( z ) ~ ( z ’ )  + ~Az)P(z’)  - 3v(z)v(z’))l, (11) 

where 6f,1,f ( z )  are appropriate projections of the 
coefficients U , ~ ~ J ~ )  along the z direction, 

fif&f(Z) = dRu(F.)P,(zP), (12) J‘ 
where r =(R,z)  and r = ( r ( .  

3.2. The reference free energy 
Let us turn to the contribution from the reference 

fluid, FSef. A full account of our model for Fref is given 
by Mederos and Sullivan [7]. There is a contribution 
from the ideal gas Fld: 

Frep = Fid + AFrep 

= k B 7  drdAp(r,h)(logp(r,h) - 1)  + AFTep. 

(13) 

i 
The contribution from the purely repulsive forces 

AF,,, is usually described by a reference hard-interaction 
model with temperature-independent hard-core. This 
contribution is simply neglected in the McMillan and 
Kobayashi [27] treatment. However, it is now clear that 
these hard core effects are crucial in determining liquid 
crystalline behaviour and must be included at liquid 
densities. Different models have been proposed to 
improve on the old treatments, using both isotropic and 
anisotropic hard interactions. In her studies of nematic 
ordering at fluid interfaces, Telo da Gama [S] used 
simple hard-sphere interactions (in a local-density 
approximation), 

AFsep = A F H S b ( r ) I  = drP(r)AyHS(P(r)), (14) s 
where AYHS(p) is the excess of free energy per particle 
of a hard-sphere fluid of density p. 

By an appropriate scaling, this approximation also 
applies to a system of perfectly uligned hard ellipsoids of 
major and minor diameters (T,~ and ( T ~ ,  respectively. 
Now, since we would like to describe smectic phases, 
which exhibit density oscillations over molecular length 
scales, we have to go beyond the local approximation 

of equation ( 14) and use a non-local theory, the simplest 
of which is due to Tarazona [ 141. 

In this theory 

AF,,, = drp(r)AYHs(iWh (15) j 
where p(r) is an averaged local density which takes 
account of local interactions. The mapping between hard 
spheres and perfectly aligned ellipsoids is taken care of 
by defining 

p(r) = dsw(s; p(r)02q)p(r + d * s) ,  (16) 1 
where ceq is an equivalent hard-sphere diameter satisfy- 
ing c2q = gl, a:, \.v is a weight function, and d is a diagonal 
tensor with components gL, ( T ~  and (T,, in the x, y and z 
directions, respectively. 

The weight function plays an important role in defin- 
ing the region over which densities must be averaged in 
order to calculate the effective local density in equa- 
tion (16). This density is then used to calculate a local 
free energy density in equation (15). The criteria for a 
sensible choice of weight function in a non-local density 
functional theory have been extensively discussed in the 
literature [ 71, and our particular choice has been discus- 
sed in more detail elsewhere [ 141. We remark here only 
that our weight function involves averaging over a 
direction perpendicular to the layers: the length scale of 
this averaging is given by the average diameter of the 
reference hard core molecules, and the criterion for the 
averaging is designed by scaling these molecules in one 
direction to hard sphere fluids whose properties are well 
understood. 

The free energy per unit volume is then written as 

x Clog ~ ( z )  - 1 + BAy(P(z)) - srot(z)]> ( 1 7 )  

where d is the layer spacing. In the above equation, the 
ideal-gas free energy has been split into translational 
and rotational parts, 

9 = f dsp(z)[logp(z) - 11 - - dzp(z)S,,,(z), fi s: 
(18) 

where the local rotational entropy per particle is 

S r o t ( ~ )  = ~ dA.f’(z,ft)log4n.f(-, A), (19) s 
and b =  l/k,T 
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403 Molecular theory of smectic C phases 

3.3. The rotutional entropy 
The evaluation of the rotational entropy has posed 

Problems in a variety of liquid crystal theories. The early 
truncation of the potential function eliminates order 
parameter components with indices higher than 1 = 2  
from the mean-field term. It is not, however, permissible 
to truncate the expansion of the orientational distribu- 
tion function in evaluating the rotational entropy. To 
do so would destroy the Boltzmann form of the distri- 
bution function in terms of an effective potential. 
Nevertheless, a functional dependence of the rotational 
entropy on the order parameters is absolutely necessary; 
this expansion must remain valid when the system is 
out of equilibrium. In the case of the nematic liquid 
crystal, a detailed analysis of this problem has been 
carried out by Katriel et al. [28]. The analysis which 
follows is a more sophisticated version of their argument. 

We shall show that the exact rotational entropy can 
be expressed as a functional of the three I=2-order 
parameter components when the mean field does not 
couple to higher order components. Demanding that the 
free-energy functional (1)  be stationary with respect to 
f(z, h) leads to the integral equation 

- Wefd2,fi) 
(20) - 

(z”) = j dfi e-bveff(Z,h)’ 

The effective potential V,, is defined by 

Kff(z, h) = dr’ d&p(z’)f(z’,  fi’j&(r - r’,fi, fit), 
(21) 

s 
and can be written in terms of functions Zi(z), i = 0, , . . , 3  
(whose explicit expressions are not given) as 

l/eff(z, e,#) = I,(Z) + I~(Z)P~(COS e) + i2(4 sin 28 cos 4 
+ I ~ ( z )  sin’ e cos 24. (22) 

The functions Ii(z) are given as convolutions of the 
coefficients E,,,,(z) and the order parameters p(z), q(z), 
O(Z) and v(z). Equation (20) can be written in terms of 
only Il(z), 12(z) and 13(z), 

f(z, a) = ~ _ _ _ ~ ~  
- [r,(=)p,(cos e) + r,(q sin 2 8 ~ 0 s ~  + sin2 BCOS@I 

_ _ ~  

dfi e - [ ~ l ~ z ) ~ r ( c ~ s e ) + r 2 ( ~ ) s i n z e c o s ~ +  r3(z)sin2ecos2+] 

(23) 
s 

We stress that this equation is a condition for equilibrium 
and therefore is only satisfied at equilibrium: we cannot 
use it to compute the entropy since it defi:es f self- 
consistently. Now for a non-equilibrium f (z ,a )  we can 
use the functional form (23) to write, without loss of 

generality, 
e n l ( z ) ~ 2 ( c ~ ~ e )  + A,(z) sin28cosb + A3(z)sin26cos2+ 

f(z,a)= Idhe” 1( j~,(cose) +n,(sjsin z@cos+ +n3(z)sin2 ecos2+ 3 

(24) 
where Ai(z) are undetermined functions of z, which can 
be thought of as external one-body potentials which set 
up a predetermined orientational structure in the system 
(given by q, u and v). Using equations (10) and (19), the 
rotational entropy can be shown to be given in terms of 
these functions as 

Srot(Z) = 4(Z)?(Z)  + A,(z)v(z) + 4 ( z ) 4 z )  

-log 1“ 4n: 

&l(z)Pz(cos e) + A,(z) sin2(+cos+ +A,@) sin’ BCOSW 

(25) 
Now for given order parameters q(z), u(z), v(z), the 
entropy can be computed from (25) by inverting equa- 
tions (lo), with f(z, a) given by (24), thus obtaining the 
parameters A,(z). Note that z merely plays the role of a 
label in this procedure. 

3.4. Theoretical procedure and numerical method 
It has been shown by Mederos and Sullivan [7] that 

this model, without the quadrupolar term (D = 0), 
contains the essential physics to describe nematic 
and SA phases, as well as liquid-vapour coexistence. 
Poniewierski and Sluckin [ 111 have also shown that in 
a simplified model with perfect orientational order a 
non-zero quadrupolar term (D  # 0) induces tilted smectic 
phases. In a tilted smectic phase, molecules adopt a 
layered configuration in which their symmetry axes tilt 
away from the layer normal. The tilt is described by an 
angle t,k. If dA is the layer spacing in the smectic A phase, 
the corresponding quantity in the tilted or smectic 
C phase will be given approximately by d, = d,cos $. 
In our extended theory, the tilt angle is automatically 
incorporated into the description of the mean field 
through the orientational order parameters. 

The tendency of the system towards tilting which 
arises from the effect of the quadrupole is opposed by 
the C term and the hard core. The hard-core contribution 
is difficult to model. We have tried, therefore, to simplify 
this portion of the problem as much as possible. The 
physical intuition is that for non-zero tilt, the molecules 
have less free volume at their disposal to move within 
the layer, leading to an increase of steric energy in the 
layer. We now describe the way in which this effect is 
incorporated into the theory. 

In our model, the hard core consists of parallel 
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404 E. Velasco et ul. 

ellipsoids of diameters gI and g,,. The ellipsoids are in 
turn parallel to the layer normal or z direction. The 
local encrgy per particle is given by the hard-sphere free 
energy evaluated at the average density P(z ) ,  which is a 
weighted average of the density wave over an ellipsoidal 
volume related to the molecular volume; the weight 
function w is isotropic and has the range of the direct 
correlation function. 

A crucial part of the modelling process concerns the 
way in which tilting the director with respect to the 
layer normal affects the reference hard core system. We 
modify the hard-core major diameter according to 
o l , ( ~ )  = cos $; the ellipsoids do not tilt, but the molecu- 
lar volume remains constant. There is then an increase 
in the local average density of the layer and a corres- 
ponding increase in the energy. This is because (T,. will 
be larger and the contribution from the maximum of 
the density wave to the weighted average over the 
modified molecular volume will be more important. This 
effect is compensated by the relaxation of the layer 
spacing to fill the interlayer free volume. The coupling 
between the layer spacing favoured by the hard core 
and the tilt angle means that, in a constrained minimiza- 
Lion of the free energy (at constant tilt angle), the hard- 
core sets up an underlying structure. The balance 
between the different mean-field terms determines the 
final stability of the smectic C phase. 

The treatment of the reference hard core system, 
although it clearly contains some of the important 
physics of the problem, is not entirely satisfactory. The 
reference system, for example, has a different symmetry 
from the real smectic C liquid crystal. We shall briefly 
return to this question in the final section. 

The free energy (18) has been written as a functional 
of the spatially-varying order parameters p, y, p and 1'. 

These functions are periodic along z ,  with period d, the 
interlayer spacing. In order to find the equilibrium state 
of the system, the free energy has to be minimized with 
respect to all these functions. This is an exceedingly 
complicated numerical problem, which can be solved 
only by using sophisticated numerical techniques. 

The methodology is as follows. First, the order para- 
meters are discretised on a mesh along the z axis, p i =  
p(zi), y i  = y(zi), etc., zi = hi .  Using h = 0.050,~ the number 
of independent variables exceeds 100 for the values of 

(around 2) considered. The period d is also an 
independent variable. We have implemented an efficient 
conjugate gradient minimization method to deal with 
such a large number of variables. However, the calcula- 
tion of phase diagrams entails an unreasonable amount 
of computer time. A simplification can be introduced by 
assuming that the distribution function is uniaxial in the 
reference frame of the director (i.e. neglecting molecular 
biaxiality). This permits the elimination of one further 

order parameter. It turns out to be more transparent in 
this case to take the remaining two independent order 
parameters as the tilt angle $, and the degree of orients- 
tional order around the director, yr(z). We assume that 
the tilt angle remains constant throughout the material 
and does not depend on z. The relation between the 
order parameters in the laboratory and director reference 
frames is, in the uniaxial case, 

v ( z )  = r? , (~)P2(COS $)? 

p ( z )  = yp(z) sin2 $, 

v(z) = y,(z) sin 2$. (26) 

Another practical problem involves the minimization 
with respect to the period. This requires an extremely 
fine mesh and consequently an unreasonably large 
amount of computer time. We thus choose to use a 
parameterization scheme for the order parameter pro- 
files. The latter can be expanded in a Fourier series 
along the z direction (normal to the layers), and the free 
energy minimized with respect to the expansion coeffi- 
cients. But for highly structured smectics many terms in 
the series are needed. Because of this, and also to avoid 
problems with negative densities, we use an exponential 
parameterization for p(z) and y,,(z): 

&) = elcos(2rr=)'d 

yp(z) = e'lcos(2nz)ld ( 2 7 )  

where Nn.,Nl, are normalization constants, /lo is the 
mean density and yo gives the nematic order. 

It eventually became clear that the free energy and 
thermodynamic behaviour of the system are not severely 
influenced by the simplifying assumption of taking the 
orientational profile yp(z) as a constant, yp(z) = ' lo. This 
is equivalent to making a decoupling approximation at 
the level of the one-particle distribution function, 

P(Z, A) = P(Z)f&, (38)  

which, for highly ordered smectics, works very well. 
It therefore finally turned out to be sufficient to 

consider the free energy as a variational function of 
the parameters A, qo, $ and d for fixed density p o  and 
temperature T. In our later runs, a standard Newton- 
Raphson minimization algorithm was used. A set of 
selected checks were carried out using the full minimiza- 
tion conjugate gradient scheme. In this way, we were 
able to conclude that the two approximations introduced 
above do not play any significant role as far as the 
determination of the phase diagram is concerned. 

In the calculations, a non-dimensional temperature 
scale is set by defining T* = k ,  T/A, making it convenient 
to rescale B, C and D by Bc = B/A, C* = C / A  and D* = 

D/A.  The non-dimensional densities are defined by 
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pg = p003. In what follows we may without ambiguity 
drop the asterisks. 

4. Results 
In their model for smectic C phases, Poniewierski and 

Sluckin (PS) [ 1 13 used a hard-cylinder core in Onsager 
approximation and a quadrupolar interaction consid- 
ered in a mean field approximation. It is important to 
note that in this model the molecular orientations are 
frozen, i.e., the nematic order parameter is set to one. 
PS found nematic, SA and Sc phases, with second order 
phase transitions between all pairs of phases, and also a 
NAC point. In the quadrupole (or temperature)-density 
plane an interesting feature was observed consisting of 
the smectic phases being less stable with respect to the 
nematic as quadrupole (temperature) was increased 
(decreased). It was argued that this result could be an 
artifact of the approximation for the hard core, or 
alternatively a real feature resulting from the tendency 
of the quadrupole to stabilize the nematic relative to the 
smectic phases. 

We first make contact with the work of PS by studying, 
within our model, the limit of perfect order. This enables 
us to check whether some of the global features of the 
two models, such as the phase diagram and the order 
of the phase transitions separating the phases, were 
comparable. For typical values of other parameters, the 
results for the temperature-quadrupole (T-D) phase 
diagram are shown in figure 1. We find that indeed the 
same three phases occur as in PS. 

We observe that, by contrast with the PS model, 
where the only mean-field term is a quadrupole, in our 
model there are three attractive terms. As a result T and 
D can no longer be combined into a single universal 
parameter. The values of all, B and C determine the 
regions of stability of the isotropic, nematic and SA 
phases. The D-term favours a S, and affects only the 
smectic phases. It thus controls the location of the N-SA, 

0.75 

0.6 

0.45 
\ e 

0.3 

0.15 

0 
0.1 0.2 0.3 

-D/A 

Figure 1. The T- D phase diagram in the limit of perfect 
nematic order, with c,, = 2.25, B = 0.3, C = 0.34 and po = 1. 

N-Sc and S,-S, phase boundaries. From figure 1 it is 
clear that an increasing quadrupole decreases the 
stability of the SA with respect to both nematic and S,. 
The quadrupole thus discourages the formation of a 
layered phase in which all the molecules point at 
directions perpendicular to the layer. We shall present 
additional evidence of this below. 

Of some significance is the fact that the SA-Sc and 
N-Sc transitions are first order whereas in the PS model 
they are second order. We do find that the N-SA 
transition is almost certainly second order all the way 
down to D = 0, as in the PS model. It is possible that 
the order of these transitions changes for longer molec- 
ules, but we have not been able to carry out calculations 
to check this point. It is, however, important to bear in 
mind that the PS calculations were done with a molecu- 
lar length-over-width ratio of 5; increasingly longer 
molecules should favour second order transitions. 
However, our al,/ol is not directly comparable to their 
L/D since they do not play similar roles in their respective 
theories [ 71. 

When the constraint of perfect nematic alignment is 
relaxed, the question is whether the Sc phase appears at 
all. The quadrupolar interaction favours a tilted config- 
uration in a layer when the molecules are forced to stay 
parallel to each other. However, when molecules are free 
to rotate around axes perpendicular to their symmetry 
axes, the minimum energy of a pair of molecules with 
linear quadrupoles corresponds to a ‘T’ configuration, 
which is incompatible with a layered structure. This may 
destroy the nematic order, and hence with it the smectic 
C order. The stability of the S, phase will depend on a 
delicate balance between the hard core and C term, 
which prevent the layer from tilting, and the quadrupole 
or D term, which favours the tilt, if only nematic order 
can be maintained. 

Using the full (free orientations) model, we first equi- 
librated a SA phase with oIl = 2.25, B=0-3 and C =  
-0.34. In the results which follow, the B and C para- 
meters will take these values. This choice was motivated 
by the work of Mederos and Sullivan [ 71 who calculated 
the complete phase diagrams in the T -  po and P - T 
planes. For these parameters, the phase diagram exhibits 
nematic and SA phases, with I-N-SA and V-I-SA triple 
points and the nematic phase is only moderately stable. 
At T = 0.15, with mean density of pa = 09, the system is 
well inside the region of S, stability. The quadrupole 
was then switched on, and we performed constrained 
minimisations with fixed tilt. In figure2 we present 
results for the free energy of the constrained S,, relative 
to the S,, for different values of the quadrupole 
parameter. 

As the quadrupole strength is increased, the system 
finds it increasingly favourable to tilt. For D = -032, 
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1c 
Helmholtz free energy as a function of angular tilt 

in a smectic phase, showing increasing stability of the S, 
phase as quadrupolar strength D is increased. Phase and 
molecular parameters as discussed in the text. 

Figure 2. 

the tiltcd structure is mechanically metastable with 
respect to the SA, and for still larger D it becomes more 
stable. It is interesting to note that the minimum of the 
free energy occurs at $ x 37", and that the transition is 
first order since the free energy exhibits a barrier. The 
quadrupolar energy of a layered arrangement of parallel 
molecules is a minimum for an angle of e449". The 
occurrence of tilt angles less than that reflects the 
competition between quadrupole and the other molecu- 
lar forces. The results embodied in figure 2 demonstrate 
the possibility of having a tilted smectic phase in a 
model with quadrupolar forces when the latter compete 
with other smectic-forming interactions. 

Figure3 shows the behaviour of the parameter k,  
related to the smectic order parameter, as a function of 
tilt angle. As can be seen from the figure, the layers 
become more structured as the system tilts and the 
smectic order parameter peaks precisely at the tilt angle 

12 

A 8  

1 

0 10 20 30 40 50 

* 
Figure 3. The quantity i as a function of tilt angle 9 for the 

same phase parameters as in figure 2. The ratio Y =  
pmax/pm,,, = e2'. Thus i = 3 corresponds to r x 300, and 
1 = 14 corresponds to r 2 loi2. 

where the free energy presents its minimum. This shows 
the strong coupling between the structural parameters 
of the theory. Likewise, the nematic order parameter. 
depicted in figure 4, increases with the tilt angle, which 
reflects the increasing difficulty found by the molecules 
to disorder orientationally as the packing in the layers 
becomes higher. Figures 3 and 4 show that for a tilt 
angle of x 30.6", the effect of the quadrupole essentially 
vanishes. At this tilt angle, the energy of two parallel 
molecules interacting via a quadrupole is prccisely zero. 
This effect remains even when the nematic order is not 
perfect so long as the distribution around the director 
is symmetric. 

We now discuss the phase behaviour of the model. 
We set the quadrupole parameter D = -0.36, and con- 
sider two values of c q  = 2.00 and gII = 2.25. For shorter 
ellipsoids, no stable S, phase was found. The correspond- 
ing phase diagrams are presented in figures 5 and 6. For 
G , ~ =  2.00, the S, phase is not stable and the phase 
diagram shows (apart from the vapour phase) isotropic, 
nematic and S, phases separated by first order phase 
boundaries. Increasing the molecular elongation to cIl = 

2.25 favours the S, phase which, however, supersedes 
the nematic. In figure 7 we show how the tilt angle 
behaves as a function of temperature at constant density. 
The tilt angle reduces very slightly as temperature is 
increased, but this change is essentially insignificant. 

An unphysical feature of the model appears at higher 
temperatures when trying to locate the I S, transition; 
this seems to be second order, rather than first order as 
expected. We have extended the calculations to include 
a periodic wave in ylP according to (27) and looked for 
possible effects arising from couplings with the density 
wave. This does not appear to change the behaviour. 
We are presently investigating this anomaly in more 
detail. 

p 40 

0 68 1 ILLLl I L L  I t 1 LLLl 
0 10 20 30 40 50 

+ 
Figure4. The nematic order parameter yp as a function of 

tilt angle, for the system of figures 2 and 3. 
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(4 
3.2 
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1.6 

1.2 

0.8 

0.4 

0 
0.2 0.21 0.22 0.23 0.24 0.25 

b T / A  
(b) 

Figure 5. (a) Phase diagram in p T  plane for the system 
discussed in the text with cll = 2.00 showing I, N and S, 
phases. (b) Same phase diagrams in P-T plane. 

0.21 

0.2 

i? 0.19 

0.18 

0.17 

0.16 
0.8 0.9 1 

P a 3  

Figure 6. Phase diagram in p-T plane for system discussed 
in text with uII = 2.25 showing I, N and SA phases. 

5. Discussion and conclusions 
In the model without a quadrupole, the parameters 

of the model, B, C and oII can be varied, and quantitat- 
ively different phase diagrams are obtained [ 7 ] .  The 
region of SA stability on the phase diagram depends 
crucially on the value of C. However, the nematic phase 

50 

1// 30 40:: 20 1 -  

10 
I 

, 
0 ' ~ " " " " '  

0.16 0.2 0.24 

k J / A  

Figure7. Temperature dependence of the tile angle $, as 
discussed in the text; cII = 2.25, po = 0-9. 

is not affected by either C or D since the effect of terms 
on uniform phases vanishes unless I = 0. For a high 

enough value of C, the smectic phase dominates at the 
temperatures of interest, in the sense that along 
liquid-vapour coexistence, the sequence of phases is 
isotropic-SA. The nematic phase is pushed to high 
temperatures and the region of nematic stability reduced. 
For low values of C, the smectic A phase is stable only 
at very low temperature. 

Mederos and Sullivan [7] have shown that in the 
present theory the formation of the smectic A phase 
results from coupling of repulsive and attractive inter- 
actions. For weakly anisotropic cores, the stability of 
the smectic phase induced by the C term is pre-empted 
by solid formation, whereas only when both cr,, and C 
are simultaneously large do genuine smectic phases 
occur. The mechanism underlying the formation of smec- 
tic phases in this theory has been extensively discussed 
in [7]. The stability of the system against density 
fluctuations in one dimension can be understood by 
examining the q-vector dependence of the free-energy 
Fourier transform. The hard-sphere contribution favours 
ordering at a weakly density-dependent wavelength 
which is roughly equal to cIl (see figure2 of Mederos 
and Sullivan). On the other hand, the A and B contribu- 
tions discourage order at any finite wavelength, whereas 
the C contribution presents a minimum at some wave 
number which competes with the hard core minimum. 
This is demonstrated in figure 8. It is from this competi- 
tion that a periodic density wave settles at some period 

With the addition of the quadrupole, the S, phase 
becomes less stable with respect to both nematic and Sc 
phases. We show in figure 9 how the smectic and nematic 
order parameters 2, q of a constrained smectic A vary as 
a function of increasing quadrupole. Both order para- 
meters are dramatically reduced. A large quadrupole is 

dxcl l .  
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,--. 
2 -01 > 

-0.2 

-0.3 

0.4 

Figure 8. B, C and D contributions to the Fourier components 
y(q) of the mean field potentials I , , (z)  defined in equation (22). 
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Figure 9. The effect of adding quadrupolar potential inter- 
action terms onto the nematic and smectic order para- 
meters in the SA phase. Same phase parameters as in 
figure 4. 

required to overcome the free energy barrier opposing 
tilt exerted by both the hard core and the C term. 

The mechanism for this effect can also be discussed 
in the light of the q-vector behaviour of the free energy. 
One feels intuitively that reducing the value of C should 
favour the formation of a S, phase. Now, however, the 
S, phase simply cannot occur. Herein lies the most 
obvious defect of the model: the hard core by itself 
cannot produce a layered structure. As a result, in order 
to have stable S, and S, phases, we need, simultaneously, 
large values of C and D. But a large value of D has the 
effect of destroying the stability of the S, structure, 
whereas a large C kills the nematic. Which of these two 
phases shares the phase diagram with the S, will depend 
on the value of q. For high q, the SA phase is favoured 
whereas for low ull, the nematic is favoured because the 
S ,  phase now has reduced stability, as compared to the 
nematic phase whose stability is unaffected by the value 
of uIl. The relative stability of the nematic and S, phases 
depends very sensitively on oII . 

It thus turned out to be difficult to construct a phase 
diagram in which all three phases were present at the 
temperatures of interest. It seems likely that more soph- 
isticated treatment of the basic physics of the hard core 
is required in order to obtain phase diagrams which 
more satisfactorily describe the possibility of a continu- 
ous transition between the S, and S, phases, and thus 
the possibility of a correct phase progression with 
decreasing temperature. Work on such a model is in 
progress. 
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